

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.7

UG495: Silicon Labs Wi-SUN Developer’s
Guide

This document is a reference for those developing applications
using the Silicon Labs Wi-SUN (Wireless Smart Ubiquitous
Network, Field Area Network) SDK (Software Development Kit).
The guide covers the (Wi-SUN) stack architecture, application
development flow, steps to configure the application Wi-SUN radio
settings and advanced debug features. This version applies to the
Silicon Labs Wi-SUN SDK version 1.x.x and higher.

The purpose of this document is to fill in the gaps between the Silicon Labs Wi-SUN Field
Area Network (FAN) API reference, Gecko Platform references, and documentation for
the target EFR32xG part. This document provides details that will help developers opti-
mize their application for their target environment.

KEY POINTS

• Wi-SUN SDK stack, including firmware
and application project structure, and
software components

• Application development guidelines
• Wi-SUN radio configuration
• Advanced tools to test and debug a Wi-

SUN application

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Table of Contents

silabs.com | Building a more connected world. Rev. 0.7 | 1

Table of Contents
1 Introduction... 1

2 Wi-SUN FAN Stack ... 2

2.1 Firmware Structure .. 2

2.2 Application Project Structure .. 3

2.2.1 Wi-SUN Files Library Files ... 3

2.2.2 RAIL .. 3

2.2.3 EMLIB and EMDRV ... 3

2.2.4 Mbed TLS ... 3

2.3 Optional Software Components ... 4

3 Wi-SUN Application Development ... 5

3.1 Responding to Wi-SUN Events .. 5

3.2 Implementing Application Logic.. 5

3.3 Changing Operating System .. 5

3.4 Using a Different Development Environment .. 6

3.5 Wi-SUN Stack Heap Requirement ... 7

4 Wi-SUN Configurator .. 8

4.1 Application Panel .. 8

4.2 Security Panel ... 9

4.3 Radio Panel .. 10

4.4 Changing the Default Wi-SUN Radio Configuration .. 11

5 Testing and Debugging ... 13

5.1 Access Debug Traces from the Wi-SUN Stack ... 13

5.2 Export Wi-SUN Traces to Wireshark .. 13

5.3 Connect the Wi-SUN Network to Another IP Network ... 16

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Introduction

silabs.com | Building a more connected world. Rev. 0.7 | 1

1 Introduction

This document contains information for anyone developing applications in the Silicon Labs Wi-SUN SDK. It assumes that the current
version of the Silicon Labs Wi-SUN SDK has been installed and that the developer is familiar with creating and flashing applications, and
with the functionality available as a starting point in the example files contained in the SDK. If you are not familiar with these items, and
are just getting started, see the Simplicity Studio 5 User’s Guide and QSG181: Silicon Labs Wi-SUN Quick-Start Guide. For more infor-
mation about configuring a Wi-SUN network, see AN1332: Silicon Labs Wi-SUN Network Setup and Configuration.

The Silicon Labs Wi-SUN API reference that matches the installed SDK is available on the Simplicity Studio DOCUMENTS tab. All
versions are available at https://docs.silabs.com/wisun/latest/wisun-stack-api/.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://www.silabs.com/documents/public/quick-start-guides/qsg181-wi-sun-sdk-quick-start-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1332-wi-sun-network-configuration.pdf
https://docs.silabs.com/wisun/latest/wisun-stack-api/

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN FAN Stack

silabs.com | Building a more connected world. Rev. 0.7 | 2

2 Wi-SUN FAN Stack

2.1 Firmware Structure

The following figure describes the high-level firmware structure. The developer creates an application on top of the stack, which Silicon
Labs provides as a precompiled object-file, enabling the Wi-SUN connectivity for the end-device.

Figure 2.1. Wi-SUN Stack Architecture Block Diagram

The Wi-SUN stack contains following blocks.
• Wi-SUN stack – Wi-SUN functionality consisting of an IP stack, MAC layer, the routing protocol (RPL), and security manager.
• Wi-SUN RF test plugin – Optional software component to add an API to perform RF tests (for example, create an RF tone).
• Wi-SUN Util Functions – Optional software component to add helper functions to inform the application about the Wi-SUN PHY

configured in the RAIL configuration file.

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN FAN Stack

silabs.com | Building a more connected world. Rev. 0.7 | 3

2.2 Application Project Structure

This section explains the application project structure and the mandatory and optional resources that must be included in the project.

2.2.1 Wi-SUN Files Library Files

The Wi-SUN stack libraries are summarized in the following table.

Table 2.1. Wi-SUN Stack Libraries

Wi-SUN stack library name To use with
libwisun_router(_core)_efr32xgXx_micrium_gcc_debug.a Wi-SUN router with Micrium OS, GCC, with debug traces
libwisun_router(_core)_efr32xgXx_micrium_gcc_release.a Wi-SUN router with Micrium OS, GCC, no debug trace
libwisun_router(_core)_efr32xgXx_micrium_iar_debug.a Wi-SUN router with Micrium OS, IAR, with debug traces
libwisun_router(_core)_efr32xgXx_micrium_iar_release.a Wi-SUN router with Micrium OS, IAR, no debug trace
libwisun_router(_core)_efr32xgXx_freertos_gcc_debug.a Wi-SUN router with FreeRTOS, GCC, with debug traces
libwisun_router(_core)_efr32xgXx_freertos_gcc_release.a Wi-SUN router with FreeRTOS, GCC, no debug trace
libwisun_router(_core)_efr32xgXx_freertos_iar_debug.a Wi-SUN router with FreeRTOS, IAR, with debug traces
libwisun_router(_core)_efr32xgXx_freertos_iar_release.a Wi-SUN router with FreeRTOS, IAR, no debug trace
libwisun_rcp_efr32xgXx.a Radio coprocessor (Linux border router)
libwisun_mac(_core)_efr32xg1Xx.a MAC layer for the Radio coprocessor (Linux border router)

The Wi-SUN stack library file names containing “_core_” do not support the LFN feature. The X stands for the supported MCU generation.
The file names containing “_efr32xg1x_” are built to run on Series 1 MCUs and those containing “_efr32xg2x_” are built to run on Series
2 MCUs.

2.2.2 RAIL

The Wi-SUN stack uses RAIL to access the radio and RAIL libraries needs to be linked with Wi-SUN stack. RAIL has separate libraries
for each device family and for single- and multi-protocol environments. RAIL libraries are provided in the Gecko SDK Suite. For more
information refer to UG103.13: RAIL Fundamentals and other RAIL documentation.

2.2.3 EMLIB and EMDRV

The Wi-SUN stack uses EMLIB and EMDRV libraries to access EFR32 hardware. EMLIB and EMDRV peripheral libraries are provided
in source code, and they must be included in the project. EMLIB and EMDRV are part of the Gecko SDK Suite. For more details on
EMLIB and EMDRV, see platform EMDRV documentation and EMLIB documentation on https://docs.silabs.com.

2.2.4 Mbed TLS

The Wi-SUN stack uses the Mbed TLS library for cryptographic operations. The Mbed TLS library is provided in source code and must
be included in the project. Mbed TLS is part of the Gecko SDK Suite. For more details, refer to the Mbed TLS documentation.

https://docs.silabs.com/

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN FAN Stack

silabs.com | Building a more connected world. Rev. 0.7 | 4

2.3 Optional Software Components

In addition to the Wi-SUN stack core functionality, the Wi-SUN SDK contains optional software components that you can leverage to
customize the application. Add those components in the SOFTWARE COMPONENTS tab of a project, as shown in the following figure:

Figure 2.2. Wi-SUN Software Components

There are four important components:
• Application core: Provides application basic functionalities like event handling, callback management, and the Wi-SUN network con-

nection.
• CoAP: Provides a Constrained Application Protocol (CoAP) implementation running on top of the Wi-SUN stack. The CoAP compo-

nent should be used as an example of implementation of other software libraries on top of the Silicon Labs Wi-SUN stack.
• iPerf: Provides a widely supported tool to evaluate throughput on IP interfaces. The implementation can interoperate with other iPerf2

implementations. It currently only supports UDP server and client modes.
• POSIX-Compliant Socket: Provides a POSIX-like socket API on top of the standard Wi-SUN stack socket API. In addition to the API

abstraction, this component makes the socket accesses thread-safe.

For the complete software documentation, visit https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-services .

https://docs.silabs.com/wisun/latest/wisun-stack-api/sl-wisun-services

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Application Development

silabs.com | Building a more connected world. Rev. 0.7 | 5

3 Wi-SUN Application Development

To get started with Wi-SUN application development, Silicon Labs recommends that you become familiar with different Wi-SUN sample
applications. Then, you can use the Wi-SUN SoC Empty sample application as a template and a starting point for a new application.

The development of a Wi-SUN application consists of two main steps:
1. Responding to the events raised by the Wi-SUN stack.
2. Implementing additional application logic.

Optionally, you can change several Wi-SUN application settings with a few clicks:
1. Operating system used by the application.
2. IDE (Integrated Development Environment) used during the development.

3.1 Responding to Wi-SUN Events
A Wi-SUN application is event-driven. The Wi-SUN stack generates events when a connection is successful, data has been sent, or an
IP packet is received. The application has to handle these events in the sl_wisun_on_event() function. The prototype of this function
is implemented in app.c. To handle more events, the switch-case statement of this function can be created and extended. For the list of
Wi-SUN events, visit https://docs.silabs.com.

3.2 Implementing Application Logic
Additional application logic can be implemented in the app_task() function, defined in app.c. The app_task() function is called once
after the device is booted and the Wi-SUN stack is initialized. Most Wi-SUN applications’ first step is to call sl_wisun_join() to connect
the Wi-SUN device to a Wi-SUN border router. The remaining implementation is up to the developer. Visit https://docs.silabs.com to
check the list of Wi-SUN APIs available to the application.

3.3 Changing Operating System

Simplicity Studio 5 provides the ability to easily replace software components. This feature is leveraged to change the Real-Time Oper-
ating System (RTOS) used by the application and the Wi-SUN stack. To change the RTOS, complete these steps:
1. Go to the project SOFTWARE COMPONENTS tab.
2. Uninstall the Micrium OS Kernel component (default RTOS).

https://docs.silabs.com/
https://docs.silabs.com/

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Application Development

silabs.com | Building a more connected world. Rev. 0.7 | 6

3. Install the FreeRTOS component.

3.4 Using a Different Development Environment

In addition to Simplicity Studio 5, you can use alternative Integrated Development Environment (IDEs). To generate a GCC makefile or
an IAR Embedded Workbench project:
1. Go to the OVERVIEW tab.
2. Scroll down to the end of the Target and Tool Settings card and click Change Target/SDK/Generators.
3. In the CHANGE PROJECT GENERATORS list, select the type of projects to be generated.
4. Click Save and wait for Simplicity Studio to generate the project.

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Application Development

silabs.com | Building a more connected world. Rev. 0.7 | 7

3.5 Wi-SUN Stack Heap Requirement

The Wi-SUN stack relies on dynamic memory allocation to function. It stores received and outgoing packets, security tokens, routing
information, and more. The peak memory requirement is reached during the connection to a Wi-SUN network, especially during the
authentication step. The heap size is defined under the config/sl_memory_config.h file in the Wi-SUN sample applications. By default,
the heap size is configured through the SL_HEAP_SIZE define and is equal to 0x10000.

// <o SL_HEAP_SIZE> Minimum heap size for the application.
// <i> Default: 2048
// <i> Note that this value will configure the c heap which is normally used by
// <i> malloc() and free() from the c library. The value defines a minimum heap
// <i> size that is guaranteed to be available. The available heap may be larger
// <i> to make use of any memory that would otherwise remain unused.
#ifndef SL_HEAP_SIZE
 #define SL_HEAP_SIZE 0x10000

#endif

This heap size is largely inflated to accommodate potential application level requirements. The bare minimum heap size recommended
to run the Wi-SUN stack is 0xC000.

In addition to the standard heap size requirement, the Wi-SUN stack relies on an RTOS: Micrium OS or FreeRTOS. The stack requires
a number of tasks, queues, mutexes to be created. The size of this memory pool is defined either by:
• LIB_MEM_CFG_HEAP_SIZE when using Micrium OS
• configTOTAL_HEAP_SIZE when using FreeRTOS when using the heap_4 implementation

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Configurator

silabs.com | Building a more connected world. Rev. 0.7 | 8

4 Wi-SUN Configurator

When creating a new Wi-SUN sample application, a Wi-SUN Configurator is added to the project by default. It provides a configuration
to the main settings of the Wi-SUN application through three panels: Application, Security, and Radio. The Wi-SUN Configurator tab is
available when a project is created or can be displayed by opening /config/wisun/wisun_settings.wisunconf.

4.1 Application Panel

The Application panel exposes multiple Wi-SUN stack settings associated with the application. It allows editing the following, among other
things:
• The network name the device will try to connect to
• The network size setting
• The device’s TX output power
• The unicast dwell interval

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Configurator

silabs.com | Building a more connected world. Rev. 0.7 | 9

4.2 Security Panel

The Security panel displays the private key and certificates used by the device to authenticate itself when connecting to a Wi-SUN
network. By default, it uses the Silicon Labs demonstration samples. They can be modified to use a distinct certificate infrastructure
aligned with the border router certificate.

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Configurator

silabs.com | Building a more connected world. Rev. 0.7 | 10

4.3 Radio Panel

The Radio panel is an interface to configure the radio profiles included in a Wi-SUN application. It provides a user interface to access any
specified Wi-SUN FAN 1.0 or FAN 1.1 PHY. A radio button allows the user to choose between the FAN 1.0 or FAN 1.1 context.

The complete list can be filtered to help you find the right PHY configuration. An application can embed several PHYs from different
regions and different specification versions.

The "Application's Default PHY" input defines the PHY that the application starts with. The default value depends on the EFR32 radio
board used to create the project. For example, a BRD4163A radio board supporting the 868 MHz band defaults to the mandatory Wi-
SUN PHY for the European region (that is, Wi-SUN FAN EU - 1 – 1a). On the other hand, a BRD4164A radio board supporting the 915
MHz band defaults to the North America mandatory Wi-SUN PHY (that is, Wi-SUN FAN NA - 1 – 1b). The user can always open the
dropdown list and select another default PHY.

Every selected Wi-SUN PHY can be edited in the Radio Configurator by clicking the pen icon. This action opens the Radio Configurator
user interface on the selected Wi-SUN PHY. Moreover, non-Wi-SUN FAN PHYs are listed under "Other Custom Profile" for information.

A PHY can be edited in the Radio Configurator to step out of the Wi-SUN FAN configuration (change the number of channels or frequen-
cies).

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Wi-SUN Configurator

silabs.com | Building a more connected world. Rev. 0.7 | 11

4.4 Changing the Default Wi-SUN Radio Configuration

If a Wi-SUN application needs to use a different Wi-SUN PHY, use the Radio Configurator to select another one. In the General Settings
card, open the Select radio PHY list. Select a new Wi-SUN PHY in the list. Keep in mind the Wi-SUN PHY selected should match the
radio board capabilities. Silicon Labs does not recommend using a Chinese Wi-SUN PHY (470 MHz) on a radio board supporting the
868 MHz band.

The Wi-SUN CLI project, the network performance application, the RCP sample application, and the border router demo embed all the
Wi-SUN PHYs listed in the Radio panel list. This supports changing the PHY dynamically using the CLI interface. The other sample
applications only embed a single PHY by default. In this case, the PHY change must be done before project compilation through the Wi-
SUN Configurator.

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Mode Switch

silabs.com | Building a more connected world. Rev. 0.7 | 12

5 Mode Switch

The EFR32FG25 device supports the Wi-SUN FAN stack with the Mode Switch feature for OFDM and FSK PHYs specified in the Wi-
SUN PHY Specification Revision 1VA8. To use Mode Switch for the OFDM or FSK modulations with the stack, use the Wi-SUN - SoC
Border Router project for the border router alongside the Wi-SUN - SoC CLI project for the node devices.

The mode switching feature can be used from the wisun_cli and wisun_brcli applications with the command:

wisun mode_switch [Mode Switch mode] [PhyModeID] [MAC Address]

The command parameters are:
• Mode switch mode:

• 0 = Mode Switch disabled for the selected neighbor(s)
• The [PhyModeID] parameter is ignored in this case.

• 1 = Mode Switch enabled, with a specific PhyModeID for the selected neighbor(s)
• When [MAC Address] is ff:ff:ff:ff:ff:ff:ff:ff, the global PhyModeID is set to [PhyModID] for all neighbors.

• 2 = Mode Switch enabled, with the global PhyModeID for the selected (unique) neighbor
• The [PhyModeID] parameter is ignored in this case.
• ff:ff:ff:ff:ff:ff:ff:ff cannot be used.
• The global PhyModeID must have been previously set with wisun mode_switch 1 xx ff:ff:ff:ff:ff:ff:ff:ff.

• PhyModeID: PhyModeID to switch to (when applicable)
• MAC Address: MAC address of the neighbor(s). Either a single neighbor, or ff:ff:ff:ff:ff:ff:ff:ff for all neighbors (when applicable)

Note: Mode Switch only applies to unicast data frames.

5.1 Fallback Mechanism

When Mode Switching fails too often with a neighbor (4 times more retries than successes), Mode Switching is disabled for this neighbor.

The following examples show Mode Switching in action:

Assume 3 neighbors:

1. 01:02:03:04:05:06:07:08
2. 11:12:13:14:15:16:17:18
3. 21:22:23:24:25:26:27:28

1- To use PhyModeId 34 (OFDM option 1, MCS2) globally (for all existing neighbors), the command is:

wisun mode_switch 1 34 ff:ff:ff:ff:ff:ff:ff:ff

2- To use PhyModeID 52 (OFDM option 2, MCS4) for the first and second neighbors only, two commands are necessary:

wisun mode_switch 1 52 01:02:03:04:05:06:07:08
wisun mode_switch 1 52 11:12:13:14:15:16:17:18

3- To use the global PhyModeID for the second neighbor, the command is:

wisun mode_switch 2 xx 11:12:13:14:15:16:17:18

4- To disable mode switch for the first neighbor, the command is:

wisun mode_switch 0 xx 01:02:03:04:05:06:07:08

5- To disable mode switch for all neighbors using the global PhyModeID, the command is:

wisun mode_switch 0 xx ff:ff:ff:ff:ff:ff:ff:ff

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Testing and Debugging

silabs.com | Building a more connected world. Rev. 0.7 | 13

6 Testing and Debugging

6.1 Access Debug Traces from the Wi-SUN Stack

The Wi-SUN stack provides a logging mechanism based on the Segger RTT feature to allow a finer tracing capability. To access the Wi-
SUN stack RTT traces:
1. Install the J-Link RTT Viewer.
2. Open the J-Link RTT Viewer.
3. In the Configuration panel, Connection to J-Link section, select USB.
4. In the Specify Target Device list, select the connected part (for example EFR32MG12PXXXF1024). EFR32FG25 is not yet known

to the RTT Viewer, so use any EFR32MG12 instead.
5. In the Target Interface & Speed panel, select SWD and 4000 kHz.
6. In the RTT Control Block panel, select Auto Detection.
7. Click OK.
8. If you have several boards connected, a list appears. When you need to monitor several devices, open an instance of RTT viewer per

device.
9. Select a WSTK board running the Wi-SUN stack (border router or node).
10. Click OK.

A terminal opens and the Wi-SUN stack traces are output as shown below.

[DBG][wisun]: net_init_core: 0
[DBG][wisun]: sli_wisun_task_event_handler_id: 2
[DBG][SLRF]: sli_wisun_driver_register()
[DBG][SLRF]: sli_wisun_driver_register() - driver_id: 0
[DBG][SLRF]: rf_address_write: PHY_MAC_64BIT: 00:0d:6f:ff:fe:20:bd:95
[DBG][mlme]: SW-MAC driver support rf extension 50000 symbol/seconds 20 us symbol time length
[DBG][swm]: Set MAC mode to IEEE 802.15.4-2011, MTU size: 127
[DBG][SLRF]: rf_address_write: PHY_MAC_64BIT: 00:0d:6f:ff:fe:20:bd:95
[DBG][wisun]: arm_nwk_interface_lowpan_init: 1

The application must install the ‘Third Party/Segger/RTT/SEGGER RTT’ component to generate RTT traces from the Wi-SUN stack. The
component uses a configurable RTT trace ‘channel’ (0 by default).

The Trace and Debug component provides APIs to set the Wi-SUN stack traces level and filters. Visit Wi-SUN Stack traces and debug
API for more information.

These logs can be used to report an issue to Silicon Labs support.

NB: RTT Viewer needs to be disconnected from a device to allow flashing again. The most convenient way to quickly disconnect is to
press ‘F3’, flash, then press ‘F2’ once ready to reconnect. RTT viewer will use previous settings by default.

6.2 Export Wi-SUN Air Capture Traces to Wireshark

The Wi-SUN traces export feature requires Simplicity Studio 5.1.0 or higher. It relies on the ‘Platform/Radio/RAIL Utility, PTI’ component.

Simplicity Studio's Network Analyzer enables debugging of complex wireless systems on a number of Silicon Labs part families. Network
Analyzer includes a partial Wi-SUN protocol analyzer (that is, the Wi-SUN payload cannot be decrypted). However, it can be used to
export traces to another analyzer like Wireshark.

Beginning with GSDK 4.2.1, the PTI baud Rate has been changed from the default 1600000 to 3200000. Since all out-of-box WSTKs are
set by default with 1600000, you need to change this once per WSTK in the ‘Admin’ tab, using ‘pti config 0 efruart 3200000’.
Check the results using ‘pti config’. The hardware will select the closest possible baud rate and show it in the (current) section.

https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://docs.silabs.com/wisun/1.3/wisun-stack-api/sl-wisun-trace-api
https://docs.silabs.com/wisun/1.3/wisun-stack-api/sl-wisun-trace-api

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Testing and Debugging

silabs.com | Building a more connected world. Rev. 0.7 | 14

To export Wi-SUN traces with the Network Analyzer to Wireshark, install Wireshark and follow this procedure in Simplicity Studio 5:
1. In the Simplicity IDE perspective, Debug Adapter view, right-click an EFR32xG12 running the Wi-SUN stack.
2. Select Start Capture.
3. A Live tab opens in the Editor area. It traces packets sent and received by the Wi-SUN device.
4. When you have traced the communication, click Export.

5. Under Select export format, select PCAP NG exporter,
6. Enter a path and a file name in which to store the trace.
7. In Export mode, select Wi-SUN (auto-detect protocol).
8. Click OK.

Open the new file in Wireshark. Wireshark should automatically analyze the file as a Wi-SUN exchange. The communication is initially
encrypted thanks to the Wi-SUN encryption protocol. To decrypt the communications, the GAK key and key index set information are
required. They can be retrieved on the border router CLI by issuing the following command:

https://www.wireshark.org/download.html

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Testing and Debugging

silabs.com | Building a more connected world. Rev. 0.7 | 15

> wisun get wisun

wisun.state = started (2)
wisun.network_name = "Wi-SUN Network"
wisun.phy_config_type = FAN 1.0 (0)
wisun.regulatory_domain = NA (1)
wisun.operating_class = 1
wisun.operating_mode = 0x1b
wisun.fec = 0
wisun.chan_plan_id = 1 (unused)
wisun.phy_mode_id = 2 (unused)
wisun.ch0_frequency = 863100 (unused)
wisun.number_of_channels = 69 (unused)
wisun.channel_spacing = 100kHz (0) (unused)
wisun.network_size = small (1)
wisun.tx_power = 20
wisun.unicast_dwell_interval = 255
wisun.broadcast_interval = 1020
wisun.broadcast_dwell_interval = 255
wisun.channel_mask =
00:00
wisun.allowed_channels = "0-255"
wisun.gak1 = 76:ab:9f:ce:8a:08:b8:88:6d:fc:56:fa:0e:6f:1e:ce
wisun.gak2 = 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
wisun.gak3 = 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
wisun.gak4 = 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
wisun.lfn_gak1 = 7b:92:f2:9e:68:a5:41:37:b3:5e:e7:14:04:be:37:04
wisun.lfn_gak2 = 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
wisun.lfn_gak3 = 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
wisun.mac_address = b4:e3:f9:ff:fe:c5:84:93
wisun.ip_addresses = [ll: fe80::b6e3:f9ff:fec5:8493 gua: :: dodagid: ::]
wisun.trace_filter.000-031 = 0xffffffff
wisun.trace_filter.032-063 = 0xffffffff
wisun.regulation = none (0)
wisun.rx_phy_mode_ids = 0x02,0x05,0x06,0x08,0x22,0x23,0x24,0x25,0x26

On Wi-SUN Border Router Linux, the GAK Key can be retrieved using wsbrd_cli or in /var/lib/wstk/network-keys:

$ wsbrd_cli status
network_name: Wi-SUN Network
domain: EU
mode: 1a
class: 1
panid: 0x3287
size: SMALL
GAK[0]: eb:7b:11:dd:f0:23:c3:7e:36:64:c5:9b:5b:ed:c6:c7
GAK[1]: fc:d3:1f:a7:4c:c8:c4:0f:96:7e:d0:5d:0e:a1:01:fc
GAK[2]: fc:d3:1f:a7:4c:c8:c4:0f:96:7e:d0:5d:0e:a1:01:fc
GAK[3]: fc:d3:1f:a7:4c:c8:c4:0f:96:7e:d0:5d:0e:a1:01:fc
GTK[0]: a8:d6:dc:7c:66:14:2f:b8:db:dd:af:fb:c2:27:0c:18
GTK[1]: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
GTK[2]: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
GTK[3]: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
84:fd:27:ff:fe:fe:55:bd

Silicon Labs Wi-SUN devices in the network use wisun.gak1 as the GAK key. In the first capture the GAK key is
76:ab:9f:ce:8a:08:b8:88:6d:fc:56:fa:0e:6f:1e:ce and in the second capture the GAK key is
eb:7b:11:dd:f0:23:c3:7e:36:64:c5:9b:5b:ed:c6:c7. The key index to use in Wireshark is 1 in both cases, for the first GAK
in the list.

In Wireshark:
1. Click Edit.
2. Click Preferences...
3. Expand the Protocols list and select IEEE 802.15.4.
4. Next to Decryption Keys, click Edit.

 UG495: Silicon Labs Wi-SUN Developer's Guide
 Testing and Debugging

silabs.com | Building a more connected world. Rev. 0.7 | 16

5. In the Keys window, click + (plus).
6. Under Decryption key enter the GAK key, and under Decryption key index enter the key index (starting at 1 for GAKs, starting at

5 for LFN-GAKs).
7. Click OK.

Wireshark is now able to decrypt the traces and the higher-level protocols (ICMP, TCP, UDP...). The following example of traces shows
a router pinging its border router.

The PTI output is limited in number of bytes per messages. Packets above 1022 bytes are truncated using the WSTK Firmware 1v4p0
or later (200 bytes with earlier versions). This cannot be increased with WSTKs due to hardware limitations on BRD4001. It will be
improved for Wireless Pro Kits (WPKs) once the proper firmware is available.

6.3 Connect the Wi-SUN Network to Another IP Network

Refer to the steps in AN1332: Silicon Labs Wi-SUN Network Setup and Configuration to open a backhaul connection from the Wi-SUN
border router.

https://www.silabs.com/documents/public/application-notes/an1332-wi-sun-network-configuration.pdf

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Wi-SUN FAN Stack
	2.1 Firmware Structure
	2.2 Application Project Structure
	2.2.1 Wi-SUN Files Library Files
	2.2.2 RAIL
	2.2.3 EMLIB and EMDRV
	2.2.4 Mbed TLS

	2.3 Optional Software Components

	3 Wi-SUN Application Development
	3.1 Responding to Wi-SUN Events
	3.2 Implementing Application Logic
	3.3 Changing Operating System
	3.4 Using a Different Development Environment
	3.5 Wi-SUN Stack Heap Requirement

	4 Wi-SUN Configurator
	4.1 Application Panel
	4.2 Security Panel
	4.3 Radio Panel
	4.4 Changing the Default Wi-SUN Radio Configuration

	5 Mode Switch
	5.1 Fallback Mechanism

	6 Testing and Debugging
	6.1 Access Debug Traces from the Wi-SUN Stack
	6.2 Export Wi-SUN Air Capture Traces to Wireshark
	6.3 Connect the Wi-SUN Network to Another IP Network

